

International Journal of Pharmacology and Pharmaceutical Sciences

www.pharmacologyjournals.net Online ISSN: 2664-7214, Print ISSN: 2664-7206 Received: 30-10-2021, Accepted: 16-11-2021, Published: 01-12-2021 Volume 3, Issue 1, 2021, Page No. 05-15

Honey: A remedy for depression. An investigation by experimental validation and molecular docking studies

Ben E Ehigiator^{1*}, Israel K Umana¹, Chinedu J Ikem², Chisom Izuegbu¹, Rodney O Ojesebholo³, Charles Fokunang⁴

¹ Department of Pharmacology and Toxicology, Madonna University, Nigeria

² Department of Pharmaceutical Microbiology and Biotechnology, Madonna University, Nigeria

³ Department of Mental Health, University of Benin Teaching Hospital, Nigeria

⁴ Department of Pharmacotoxicology and Pharmacokinetics, Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1,

Cameroon

Abstract

Depression also known as clinical depression, is a mental disorder of public health concern that should be properly and immediately treated because a poor medical follow up can lead to suicide resulting to death or major body self-infliction of harm. Prediction of the phytochemical compounds in honey on neurotransmitters and enzymes involved in depression were investigated by *in-silico* studies. This research was done to create docking scores, predict pharmacodynamics of honey and to identify the potential oral drugs used for the treatment of depression Studies have shown that honey and related by products like propolisto be very useful in the treatment of depression. In this preclinical research, animal models was used to demonstrate the antidepressant effect of honey on female albino mice. These tests included tail suspension test and forced swim test, during which they were shared into four groups. From the results obtained honey showed a promising antidepressant activity together with a better synergism with imipramine.

From the molecular docking scores obtained, honey was found to have phytochemical compounds (examples) with good potentials to be oral antidepressants especially Chlorogenic acid.

Keywords: depression, honey, imipramine, molecular docking, virtual screening

Introduction

Depression is a mental condition characterized by feelings of severe despondency and dejection, typically also with feelings of inadequacy and guilt, often accompanied by lack of energy and disturbance of appetite and sleep (Farrell, 2020). The burden of depression and other mental health conditions is on the rise globally. According to WHO, over 264 million people suffer from depression (WHO, 2020)^[31].

Depression is a mental disorder that so many persons suffer from and may not know they do, hence do not get proper medication and treatment follow up. Gradually the individual starts manifesting clinical symptoms like withdrawal, pharmacodependence, drug abuse and addiction and eventually showing suicidal behaviors.

Although there are known antidepressants such as SSRIs, TCAS and SNRIs, but their inability to produce complete recovery in addition to their debilitating side effects, lack of access to these medication and high cost, have forced the need by researchers to find more acceptable and effective natural alternatives. In the recent times, some research studies have implicated honey as a potential antidepressant (Ali and Hendawy, 2018)^[1].

Honey is an organic natural substance, produced from the nectar of flowers by *Apis mellifera* and it is a sweet, flavoured liquid. It contains sugars, small quantities of proteins, enzymes, amino acids, minerals, trace elements, vitamins, aroma compounds, and polyphones (Ali and Hendawy, 2018)^[1]. Honey is widely

accepted as food and medicine by all generations, traditions and civilizations, both ancient and modern.

Honey has also been used recently for the treatment of several gastrointestinal, cardiovascular, inflammatory and neoplastic states (Eteraf-Oskouei and Najafi. 2013)^[9]. Somehow, literature indicates that bee honey can be beneficial for people with psychiatric and mental health problems (Munstedt *et al.*, 2015)^[19]. Depression is considered as an imbalance of neurotransmitters and the production of the neurotransmitters is catalysed by various enzymes directly or indirectly.

Inhibition of Monoamine oxidase (MAO): this is an enzyme responsible for the breakdown of monoamines. There are two types of monoamine oxidase which are MAO-A and B. They are found in the CNS, (particularly in the neurons and astroglia). MAO-A and MAO-B are FAD-dependent enzymes responsible for the metabolism of neurotransmitters such as dopamine, serotonin, adrenaline, and noradrenaline and for the inactivation of exogenous aryl alkyl amines. They bind to the mitochondrial outer membrane and catalyse the oxidative deamination of their substrates. MAO-A mainly metabolizes 5-HT, dopamine (DA) and norepinephrine (NE) (Chaurasiya *et al.*, 2014) ^[5].

Inhibition of Cyclooxygenase; Cyclooxygenase (COX) exists in two isoforms, COX-1 and COX-2. COX-1 is constitutively expressed in the gastrointestinal tract whereas the COX-2 predominates at sites of inflammation. COX-1 is a constitutive enzyme, whereas COX-2 is inducible, short-lived and is responsible for the biosynthesis of prostaglandins in inflammatory cells and CNS. COX-2 is known to interact with neurotransmitters such as acetylcholine, serotonin, and glutamate. COX-2 contributes to the pathogenesis of the depressive disorder (Müller *et al.*, 2009)^[18].

Nitric oxide synthase catalyses the production of nitric oxide (NO) which plays an important role in the pathogenesis of mood disorders, and has been implicated in the pathophysiology of depression. Higher concentration of plasma NO in patients with the recurrent depressive disorder was associated with the severity of depressive symptom suggesting that an overproduction of NO results in oxidative stress and cell damage. Increased production of NO and peroxynitrite may cause nitration and nitrosylation of proteins that appear to be related to the pathogenesis of depression. NO modulate 5-HT release from specific brain structures, affect 5-HT re-uptake and appears to interact with selective 5-HT reuptake inhibitors used in the treatment of depression. Several studies have demonstrated that NOS inhibitors produce antidepressant-like actions in a variety of animal paradigms (Morris and Berk, 2015)^[7].

Matrix metalloproteinases (MMPs) are a family of neutral proteases that contributes to interactions between cells and their matrix, allowing movement and shape changes in processes such as development and neuronal plasticity. Oxygen radicals, NO and proteases have been implicated in MMP activation. MMP-9 serum levels significantly correlated with the depressive phases in younger subjects (<45yo) (Drago *et al.*, 2014)^[7]. This study aimed at evaluating the antidepressant activity of honey as well as the prediction of drug candidates with respect to the likely mechanisms of antidepressant actions.

Materials and Methods

Collection and identification of honey

Fresh honey (*a. mellifera*) was purchased from madonna university monastery. it was identified in the department of pharmacognosy, faculty of pharmacy, madonna university elele.

Preparation and administration of honey

Honey was weighed by measuring 10mls of honey using a measuring cylinder which was poured into beaker and it was weighed to get 15gram, therefore 10ml of honey weighs 15grams of honey. Then 10ml of honey was dissolved in 100ml of water. The colour of the dissolved honey was lighter in colour which gave a yellowish brown colour. 2.4g/kg of honey was administered to the female Albino mice 30mins before each of the experiment.

Collection, preparation and administration of the standard drug

Accord^R imipramine 10mg tablet was purchased from pharmacy at Owerri, Nigeria. A 10mg tablet was dissolved in 50ml of water. 30mg/kg of imipramine was administered to the mice 30mins before each of the experiments.

Experiment animal

Twelve female Albino mice weighing 18-26g were obtained from the Animal farm of the department of Pharmacology and Toxicology, Madonna University. They were housed in four cages A, B, C and D. They were fed the standard animal feed and fresh water was also provided for them. The animals were kept in line with laid down principles for animal care as prescribed in Helsinki's 1964 declaration. Ethical approval was given by the animal ethics committee of Madonna University, Ehthics committee-MAD/PHA/3009.

The mice were grouped randomly. n=3.

Tail suspension test

This was carried out as decribed by Steru et al. (1985)^[29]

Forced swim test

As described by (Porsolt *et al.*, 1977a, Porsolt *et al.*, 1977b) ^[22, 23].

Statistical analysis

Data were analyzed, using graph pad prism (9.1.0.221). Data with two or more independent variables, were analyzed using two-way analysis of variance (ANOVA) followed by Bonferonni's posttest, to compare replicate means by role. p values < 0.05, 0.001 and 0.0001 were considered significant.

In-silico studies

Ligand library generation

Identified secondary metabolites of A. mellifera employed for this study were determined from published literature and were used in the creation of the ligand library. Sixty one (61) secondary metabolites; Acacetin, Isorhamnetin, myricetin Hesperetin, luteolin Ferreres et al., (1994)^[11]. Kaempferol (Ferreres et al., 1998) ^[12]. Ellagic acid, caffeic acid, coumaric acid, ferulic acid (Tomás-Barberán et al., (2001)^[30]. Phenylalanine, proline, tyrosine, glutaminic acid, serine, methionine, cysteine, leucine, isoleucine, lysine, valine, threonine, arginine, histidine, glycine, tryptophan, alanine, 4-hydroxyproline, aspartic acid (Hermosín et al., 2003) ^[13]. Apigenin, genistein, pinocembrin, chrysin, pinobanksin, kaempferol, quercetin, galangin, 4-(dimethylamino)benzoic acid, gallic acid, vallinic acid, syringic acid, chlorogenic acid (Cianciosi et al., (2018)^[6]. Sucrose, maltose, isomaltose, panose, erlose, melezitose, trehalose (Ouchemoukh et al., (2010)^[20]. Kojibiose, nigerose, gentiobiose, laminaribiose, turanose (Siddiqui and Furgala, 1967)^[28]. Were retrieved from NCBI PubChem library, in Standard Database Format (2D) (Ehigiator et al., 2020)^[8]. The ligand library generated was imported to a docking software (Maestro) and prepared using the (Schrodinger suite version 2018-1b), as described by (Brooks et al., 2008)^[8].

Protein preparation

Structures of; Human hydrolase matrix metalloproteinase-2, Human hydrolase matrix metalloproteinase-3, Human hydrolase matrix metalloproteinase-9 Human monoamine oxidase B, Human Monoamine Oxidase A, Cyclooxygenase active site of cox-2, Human endothelial nitric oxide synthase and Human Histone deacetylase-2 (HDAC). Bound with ligands were retrieved from the Protein Data Base according to (Berman *et al.*, 2000). With the PDB ID: 1HOV, 4G9L, 6ESM, 1OJA, 2Z5X, 1PXX, 6PP1, 4LXZ. They were prepared, using the Protein Preparation Wizard as described by (Sastry *et al.*, 2013) ^[25]. Module in maestro 11.5 was used to prepare each protein complex. Missing hydrogen atoms, missing loop, and missing side-chains of protein structure were fixed while the added

hydrogen atoms were optimized at pH 7.0. Optimized structures were then minimized using the OPLS3 force field by converging heavy atoms to root mean square deviation (RMSD) of 0.3\AA (Sastry *et al.*, 2013)^[25].

Pharmacokinetic parameters (ADME/TOX Prediction)

The pharmacokinetic properties of the hit compounds were estimated using the Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) of the hit ligands were predicted using the Qikprop module in maestro 11.5. (Schrödinger Release 2018-1c)^[27].

Results

Effect of *A. mellifera* (Honey) on immobility time in tail suspension test after 360 seconds

As shown in figure 1, the immobility time in mice to which 5g/Kg honey alongside 30 mg/Kg imipramine were administered (Group D), showed significantly (p<0.05) shorter immobility time compared to control. Although, the group administered only honey 5 g/Kg (group B) and imipramine 30 mg/Kg (Group C) presented with shorter immobility time, compared to the untreated group (control) had no significant difference compared to control (p>0.05).

Fig 1: Effect of *A. mellifera* (Honey) on immobility time in Tail suspension test after 360 seconds. Animals per group (n) = 3. The values are mean \pm SEM.; *p < 0.05; ** p < 0.01; *** p < 0.001 when compared with control group. (Two-way ANOVA followed by Bonferonni post hoc test).

Effect of *A. mellifera* (Honey) on immobility time in forced swim test after 360 seconds

As shown in figure 1, the immobility time in mice to which 5g/Kg honey alongside 30 mg/Kg imipramine were administered (Group D), showed significantly (p<0.05) shorter immobility

time compared to control. Although, the group administered only honey 5 g/Kg (group B) and imipramine 30 mg/Kg (Group C) presented with shorter immobility time, compared to the untreated group (control) had no significant difference compared to control (p>0.05).

Fig 2: Effect of *A. mellifera* (Honey) on immobility time in forced swim test after 360 seconds. Animals per group (n) = 3. The values are mean \pm SEM.; *p < 0.05; ** p < 0.01; *** p < 0.001 when compared with control group. (Two-way ANOVA followed by Bonferonni post hoc test).

Heat map representation of docking result for compound interaction with the catalytic domain of Human hydrolase matrix metalloproteinase-2 (MMP-2) complex

Docking results here showed that compounds such as; Chlorogenic acid, coumaric acid and myricetin have high affinity for the the catalytic domain of Human hydrolase matrix metalloproteinase-2 (MMP-2) complex. Upon antagonism, they may well be good potential drugs that may cat via this mechanism

Fig 3: Heat map representation of docking result for compound interaction with the catalytic domain of Human hydrolase matrix metalloproteinase-2 (MMP-2) complex. The free energy binding of phytochemicals of *A. mellifera* docked into the substrate binding site of Hydrolase matrix metalloproteinase-2 (MMP-2) complex, compared with the antagonist, sc-74020 and represented as heat map. (The scale is a spectrum from purple (-2 kcal/mol) to red (-12 kcal/mol).

Heat map representation of docking result for compound interaction with the catalytic domain of Human hydrolase matrix metalloproteinase-3 (MMP-3) complex

catalytic domain of Human hydrolase matrix metalloproteinase-3 (MMP-3) complex. Upon antagonism, they may well be good potential drugs that may cat via this mechanism

Docking results here showed that compounds such as; Chlorogenic acid, coumaric acid have high affinity for the the

Fig 4: Heat map representation of docking result for compound interaction with the catalytic domain of Human hydrolase matrix metalloproteinase-3 (MMP-3) complex The free energy binding of phytochemicals of *A. mellifera* docked into the substrate binding site of Hydrolase matrix metalloproteinase-3 (MMP-3) complex, compared with the antagonist, NNGH and represented as heat map. (The scale is a spectrum from purple (-3 kcal/mol) to red (-11 kcal/mol).

Heat map representation of docking result for compound interaction with the catalytic domain of Human hydrolase matrix metalloproteinase-9 (MMP-9) complex

Docking results here showed that compounds such as; Chlorogenic acid, erlose and rutin, look to have high affinity for

Fig 5: Heat map representation of docking result for compound interaction with the catalytic domain of Human hydrolase matrix metalloproteinase-9 (MMP-9) complex. The free energy binding of phytochemicals of *A. mellifera* docked into the substrate binding domain of Hydrolase matrix metalloproteinase-9 (MMP-9) complex, compared with the antagonist, BE4 and represented as heat map. (The scale is a spectrum from purple (-4 kcal/mol) to red (-12 kcal/mol).

Heat map representation of docking result for compound interaction with the catalytic domain of human monoamine oxidase B.

Docking results here showed that compounds such as; Chlorogenic acid, erlose, D-maltotriose, Melezitose,

Theanderose and Isomaltotriose, look to have high affinity for the the catalytic domain of human monoamine oxidase A. Therefore are likely to potentiate the antidepressant effect of honey via this mechanism.

the the catalytic domain of Human hydrolase matrix

metalloproteinase-9 (MMP-9) complex. Upon antagonism, they

may well be good potential drugs that may act via this mechanism

Fig 6: Heat map representation of docking result for compound interaction with the catalytic domain of human monoamine oxidase B. The free energy binding of phytochemicals of *A. mellifera* docked into the substrate binding, site of human monoamine oxidase B, compared with the antagonist, isathin and represented as heat map. (The scale is a spectrum from purple (-1 kcal/mol) to red (-13 kcal/mol).

Heat map representation of docking result for compound interaction with the catalytic domain of human monoamine oxidase A.

Docking results here showed that compounds such as; erlose, Dmaltotriose, Melezitose, Theanderose, myricetin, and Isomaltotriose, look to have high affinity for the the catalytic domain of complex human monoamine oxidase A. Therefore are likely to potentiate the antidepressant effect of honey by inhibition of this enzyme.

Fig 7: Heat map representation of docking result for compound interaction with catalytic domain of human monoamine oxidase A. The free energy binding of phytochemicals of *A. mellifera* docked into the substrate binding site of human monoamine oxidase A, compared with the antagonist, hamin and represented as heat map. (The scale is a spectrum from purple (-1 kcal/mol) to red (-15 kcal/mol).

Heat map representation of docking result for compound interaction with the catalytic domain of *Mus musculus* cyclooxygenase active site of COX-2

Docking results here showed that compounds such as; Chlorogenic acid, Trehalose, Kojibiose, nigerose, quercetrin, ellagic acid, gentiobiose, galandin, Melezitose, myricetin, and Isomaltotriose, look to have high affinity for the the catalytic domain of complex human monoamine oxidase A. Therefore are likely to potentiate the antidepressant effect of honey by inhibition of this enzyme.

Fig 8: Heat map representation of docking result for compound interaction with the catalytic domain of *Mus musculus* cyclooxygenase active site of cox-2 The free energy binding of phytochemicals of *A. mellifera* docked into the substrate binding active site of cyclooxygenase 2 compared with the antagonist, diclofenac and represented as heat map. (The scale is a spectrum from purple (0 kcal/mol) to red (-10 kcal/mol).

Heat map representation of docking result for compound interaction with the catalytic domain of *Mus musculus* cyclooxygenase active site of cox-2

Docking results here showed that compounds such as; Kojibiose, theanderose, erlose and D-maltotriose, look to have high affinity

for the the heme domain of Human endothelial nitric oxide synthase.

Therefore are likely to potentiate the antidepressant effect of honey by inhibition of this enzyme.

Fig 9: Heat map representation of docking result for compound interaction with heme domain of Human endothelial nitric oxide synthase. The free energy binding of phytochemicals of *A. mellifera* docked into the substrate binding site of Human indoleamine 2,3-dioxygenase 1 (IDO1), compared with the antagonist, 7-(3-(Aminomethyl)-4-(cyclopropylmethoxy)phenyl)-4ethylquinolin-2-amine and represented as heat map. (The scale is a spectrum from purple (-2 kcal/mol) to red (-12 kcal/mol).

Heat map representation of docking result for compound interaction with heme domain of Human Histone deacetylase 2.

Docking results here showed that compounds such as; Kojibiose and Panose look to have

high affinity for the the heme domain of Human histone deacetylase. Therefore are likely to potentiate the antidepressant effect of honey by inhibition of this enzyme.

Fig 10: Heat map representation of docking result for compound interaction with heme domain of Human Histone deacetylase 2. The free energy binding of phytochemicals of *A. mellifera* docked into the substrate binding site of Human Histone deacetylase 2, compared with the antagonist and represented as heat map. (The scale is a spectrum from purple (-2 kcal/mol) to red (-10 kcal/mol).

Pharmacokinetic/toxicological properties of compounds present in *A. mellifera*

According to the Lipinski's rule of five, a good potential oral drug is not expected to violate more than two of the 4 laws (Lipinski, 2001)^[14]. D-Maltotriose, Erlose, Isomaltotriose, Melezitose,

Rutin, Panose and Theanderose look to have high affinity for some of the targets of concern, but the violate the law of potential oral drug candidature. chlorogenic acid, nigerose, myricetin coumaric acid also demonstrated high affinity for various targets. Hence, are likely to be investigated as oral antidepressant agents.

Table 1: showing the pharmacokinetic	/toxicological properties o	of compounds present in	A. mellifera
--------------------------------------	-----------------------------	-------------------------	--------------

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Compounds	Mol MW	Donor HB	Accpt HB	Qplog Po/W	HOA	ROF
Acacetin 284,268 1 3.75 2.463 3 0 2999 2 0 Apigenin 270241 2 3.75 1.607 3 0 Apprine 174.202 7 5 -3.529 1 1 Apprine 133.104 3 4 -3.886 1 0 Catterbin hydrate 290.272 5 5.45 0.449 2 0 Catterbin hydrate 290.272 5 5.45 0.449 2 0 Chorsgenic acid 334.313 6 9.65 -0.27 1 1 Chorsgenic acid 326.302 5 11.25 0.577 2 0 Commaric acid 326.302 5 11.25 0.577 2 0 D-Tractose 180.157 5 10.2 -2.265 2 0 D-Maltose 342.299 8 18.7 <td>4-hydroxyproline</td> <td>131.131</td> <td>3</td> <td>5.2</td> <td>-2.871</td> <td>2</td> <td>0</td>	4-hydroxyproline	131.131	3	5.2	-2.871	2	0
Alaine 89.094 3 3 2.2959 2 0 Apigenin 270.241 2 3.75 1.607 3 0 Aspartic acid 133.104 3 4 -3.856 1 0 Carfetcia acid 130.104 3 4 -3.886 1 0 Carfetcia acid 180.16 3 3.5 0.5458 2 0 Catrechin hydrate 290.272 5 5.45 0.449 2 0 Chorogenic acid 354.313 6 9.65 0.27 1 1 Chromic acid 148.161 1 2 1.897 3 0 Coumaric acid 326.302 5 11.25 -0.577 2 0 D-Maltorose 180.157 5 10.2 -2.265 2 0 D-Maltorose 504.441 11 27.2 -5.521 1 3 Braize acid 170.11 4 425 <t< td=""><td>Acacetin</td><td>284.268</td><td>1</td><td>3.75</td><td>2.463</td><td>3</td><td>0</td></t<>	Acacetin	284.268	1	3.75	2.463	3	0
Apigenin 270 241 2 3.75 1.607 3 0 Arginine 174.202 7 5 -3.529 1 1 Apartic acid 133.104 3 4 -3.886 1 0 Caltechin hydrate 290.272 5 5.45 0.449 2 0 Chorogenic acid 354.342 1 3 2.349 3 0 Chrysin 254.242 1 3 2.349 3 0 Chrysin 240.292 6 7 -3.164 1 1 D-Fructose 180.157 5 8.3 -1.696 2 0 D-Maltose 342.299 8 18.7 -3.62 1 2 0 Erlose 504.41 11 25.3 5.204 1 3 0 Galtangia 270.241 2 3.5 1.778 3 0 Galtagia 270.241 2 <td< td=""><td>Alanine</td><td>89.094</td><td>3</td><td>3</td><td>-2.959</td><td>2</td><td>0</td></td<>	Alanine	89.094	3	3	-2.959	2	0
Arginine 17.4202 7 5 -3.529 1 1 Aspartic acid 133.104 3 4 -3.886 1 0 Catroin hydrate 290.272 5 5.45 0.449 2 0 Chorogenic acid 354.313 6 9.65 -0.27 1 1 Chrysin 254.242 1 3 2.349 3 0 Commic acid 365.302 5 11.25 -0.577 2 0 Cystine 240.392 6 7 -3.164 1 1 D-Fuctose 180.157 5 8.3 -1.696 2 0 D-Maltose 504.441 11 27.2.65 2.0 0 Erlose 504.441 11 27.3 5.1.371 3 0 Galangin 270.241 2 3.75 1.778 3 0 Galangin 270.241 2 3.75 1.782 3 <	Apigenin	270.241	2	3.75	1.607	3	0
Asymic acid 13.104 3 4 -3.886 1 0 Caffeic acid 180.16 3 3.5 0.545 2 0 Cattechn hydrate 290.272 5 5.45 0.449 2 0 Chorogenic acid 354.313 6 9.65 0.27 1 1 Chrysin 254.242 1 3 2.349 3 0 Cinnamic acid 148.161 1 2 1.897 3 0 Commeric acid 326.302 5 11.25 -0.577 2 0 Cystine 240.292 6 7 -3.164 1 1 D-Faltoxe 180.157 5 10.2 -2.265 2 0 D-Maltoricose 504.41 11 27.5 5.521 1 3 Ellogic acid 302.197 4 8 -1.294 2 0 Ertose 504.411 11 2.5 5.204	Arginine	174.202	7	5	-3.529	1	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Aspartic acid	133.104	3	4	-3.886	1	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Caffeic acid	180.16	3	3.5	0.545	2	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Catechin hydrate	290.272	5	5.45	0.449	2	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Chlorogenic acid	354 313	6	9.65	-0.27	1	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Chrysin	254 242	1	3	2 349	3	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Cinnamic acid	148 161	1	2	1.897	3	0
Constant 200000 2 6 7 -3.164 1 1 D-Fructose 180.157 5 8.3 -1.696 2 0 D-Glucose 180.157 5 10.2 -2.265 2 0 D-Maltose 342.299 8 18.7 -3.62 1 2 D-Maltotrose 504.441 11 27.2 -5.521 1 3 Ferulic acid 194.187 2 3.5 1.371 3 0 Galangin 20.0241 2 3.75 1.778 3 0 Gentobiose 342.299 8 18.7 -4.138 1 2 Glutamic Acid 147.13 4 5 -3.015 1 0 Glycine 75.067 3 3 -3.004 1 0 Hesperetin 302.283 2 4.75 1.782 3 0 Homogentisic acid 188.149 3 3.5 <	Coumaric acid	326 302	5	11.25	-0.577	2	0
D-Fructose 180.157 5 8.3 -1.696 2 0 D-Glucose 180.157 5 10.2 -2.265 2 0 D-Maltoriose 504.441 11 27.2 -5.521 1 3 Ellagic acid 302.197 4 8 -1.294 2 0 D-Maltoriose 504.441 11 25.3 -5.204 1 3 Ferolic acid 194.187 2 3.5 1.371 3 0 Galangin 270.241 2 3.75 1.778 3 0 Gutamic Acid 147.13 4 5 -3.005 1 0 Glutamine 146.146 5 5.5 -4.196 1 0 Glycine 75.067 3 3 -3.004 1 0 Hesperetin 302.283 2 4.75 1.782 3 0 Histidine 155.156 4 5 -2.679	Cystine	240 292	6	7	-3 164	1	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D-Fructose	180 157	5	83	-1.696	2	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D-Glucose	180.157	5	10.2	-1.070	2	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D Maltasa	242 200	0	10.2	-2.203	1	2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D-Maltotriosa	504.441	0	27.2	-5.02	1	2
Elingic atit 302.197 4 8 -1.294 2 0 Ferulic acid 194.187 2 3.5 1.371 3 0 Galangin 270.241 2 3.75 1.778 3 0 Gallic acid 170.121 4 4.25 -0.578 2 0 Gentiobiose 342.299 8 18.7 -4.138 1 2 Glutamine 146.146 5 .5.5 -4.196 1 0 Glycine 75.067 3 3 -3.004 1 0 Histidine 155.156 4 5 -2.679 2 0 Homogentisic acid 168.149 3 3.5 0.407 2 0 Hydrobenzoic acid 183.12 2 3.75 0.101 2 0 Isomaltoriose 504.441 11 27.2 5.709 1 3 Isomaltose 342.299 8 18.7 -4.0	Ellagia agid	202 107	11	0	-3.321	1	3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		504.441	4	0	-1.294	2	0
Pertuic acid194.1872 3.5 1.511 3 0 Galangin270.2412 3.75 1.778 3 0 Gallic acid170.1214 4.25 -0.578 2 0 Gentiobiose 342.299 8 18.7 -4.138 1 2 Glutamic Acid147.134 5 -3.015 1 0 Glutamine146.146 5 5.5 -4.196 1 0 Glycine75.067 3 3 -3.3004 1 0 Hesperetin 302.283 2 4.75 1.782 3 0 Histidine155.156 4 5 -2.679 2 0 Homogentisic acid 183.12 2 3.75 0.101 2 0 Isomaltose 342.299 8 18.7 -4.007 1 2 Isomaltose 504.441 11 27.2 -5.709 1 3 Isorhamnetin 316.267 3 5.25 1.2 3 0 Kaempferol 286.24 3 4.5 1.042 3 0 Kaempferol 286.24 3 4.5 0.927 3 0 Lawinaribiose 342.299 8 18.7 -3.898 1 2 Lawinaribiose 342.299 8 18.7 -3.898 1 2 Lawinaribiose 342.299 8 18.7 -3.898 1 2 Lawinari	Eriose	504.441	11	25.3	-5.204	1	3
Galangin $2/0.241$ 2 3.75 $1.7/8$ 3 0 Galtic acid170.1214 4.25 -0.578 2 0 Gentiobiose 342.299 8 18.7 -4.138 1 2 Glutamic Acid 147.13 4 5 -3.015 1 0 Glutamine 146.146 5 5.5 -4.196 1 0 Glycine 75.067 3 3 -3.004 1 0 Hesperetin 302.283 2 4.75 1.782 3 0 Histidine 155.156 4 5 -2.679 2 0 Homogentisic acid 183.12 2 3.75 0.101 2 0 Hydrobenzoic acid 183.12 2 3.75 0.101 2 0 Isomaltose 342.299 8 18.7 -4.007 1 2 Isomaltoriose 504.441 11 27.2 -5.709 1 3 Isorhannetin 316.267 3 5.25 1.2 3 0 Kaempferol 286.24 3 4.5 1.042 3 0 Laurinaribiose 342.299 8 18.7 -3.898 1 2 Laurine 131.174 3 3 -1.521 2 0 Laurine 134.29 6 4 -3.187 1 0 Kaempferol 286.24 3 4.5 0.927 3 0 <td< td=""><td>Ferulic acid</td><td>194.187</td><td>2</td><td>3.5</td><td>1.3/1</td><td>3</td><td>0</td></td<>	Ferulic acid	194.187	2	3.5	1.3/1	3	0
Galic acid 170.121 4 4.25 -0.578 2 0 Gentiobiose 342.299 8 18.7 -4.138 1 2 Glutamic Acid 147.13 4 5 -3.015 1 0 Glycine 75.067 3 3 -3.004 1 0 Glycine 75.067 3 3 -3.004 1 0 Histidine 155.156 4 5 -2.679 2 0 Homogentisic acid 168.149 3 3.5 0.407 2 0 Hydrobenzoic acid 183.12 2 3.75 0.101 2 0 Isomatose 342.299 8 18.7 -4.007 1 2 Isomatrose 50.441 11 27.2 5.709 1 3 Isomatrose 50.424 3 4.5 1.042 3 0	Galangin	270.241	2	3.75	1.//8	3	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Gallic acid	170.121	4	4.25	-0.578	2	0
Glutamic 147.13 4 5 -3.015 1 0 Glutamine 146.146 5 5.5 -4.196 1 0 Glycine 75.067 3 3 -3.004 1 0 Hesperetin 302.283 2 4.75 1.782 3 0 Histidine 155.156 4 5 -2.679 2 0 Homogentisic acid 168.149 3 3.5 0.407 2 0 Hydrobenzoic acid 183.12 2 3.75 0.101 2 0 Isomaltose 342.299 8 18.7 -4.007 1 2 Isomaltotriose 504.441 11 27.2 -5.709 1 3 Isorhamnetin 316.267 3 5.25 1.2 3 0 Kaempferol 286.24 3 4.5 1.042 3 0 Lawinaribiose 342.299 7 18 -3.833	Gentiobiose	342.299	8	18.7	-4.138	1	2
Glutamine 146.146 5 5.5 -4.196 1 0 Glycine 75.067 3 3 -3.004 1 0 Hesperetin 302.283 2 4.75 1.782 3 0 Histidine 155.156 4 5 -2.679 2 0 Homogentisc acid 183.12 2 3.75 0.101 2 0 Hydrobenzoic acid 183.12 2 3.75 0.101 2 0 Isonaltose 342.299 8 18.7 -4.007 1 2 Isomaltoricose 504.441 11 27.2 -5.709 1 3 Isorhannetin 316.267 3 5.25 1.2 3 0 Kaempferol 286.24 3 4.5 1.042 3 0 Leucine 131.174 3 3 -1.521 2 0 Luteolin 286.24 3 4.5 0.927	Glutamic Acid	147.13	4	5	-3.015	1	0
Glycine 75.067 3 3 -3.004 1 0 Hesperetin 302.283 2 4.75 1.782 3 0 Histidine 155.156 4 5 -2.679 2 0 Homogentisic acid 168.149 3 3.5 0.407 2 0 Hydrobenzoic acid 183.12 2 3.75 0.101 2 0 Isomaltose 342.299 8 18.7 -4.007 1 2 Isomaltotriose 504.441 11 27.2 -5.709 1 3 Isorhametin 316.267 3 5.25 1.2 3 0 Kaempferol 286.24 3 4.5 1.042 3 0 Laminaribiose 342.299 7 18 -3.83 1 2 Laminaribiose 342.299 7 18 0 1 1 0 Meleinine 131.174 3 3	Glutamine	146.146	5	5.5	-4.196	1	0
Hesperetin 302.283 2 4.75 1.782 3 0 Histidine 155.156 4 5 -2.679 2 0 Homogentisic acid 168.149 3 3.5 0.407 2 0 Hydrobenzoic acid 183.12 2 3.75 0.101 2 0 Isoleucine 131.174 3 3 -1.524 2 0 Isomaltose 342.299 8 18.7 -4.007 1 2 Isomaltotriose 504.441 11 27.2 -5.709 1 3 Isorhamnetin 316.267 3 5.25 1.2 3 0 Kaempferol 286.24 3 4.5 1.042 3 0 Kojibiose 342.299 7 18 -3.83 1 2 Laminaribiose 342.299 8 18.7 -3.898 1 2 Leucine 131.174 3 3 -1.521 2 0 Luteolin 286.24 3 4.5 0.927 3 0 Lysine 146.189 5 4 -3.187 1 0 Melezitose 504.441 11 25.3 -5.076 1 3 Methionine 149.207 3 3.5 -1.588 2 0 Myricetin 318.239 5 6 -0.298 2 1 Nigerose 342.299 8 18.7 -3.458 1 2 P	Glycine	75.067	3	3	-3.004	1	0
Histidine155.15645 -2.679 20Homogentisic acid168.14933.50.40720Hydrobenzoic acid183.1223.750.10120Isoleucine131.17433 -1.524 20Isomaltose342.299818.7 -4.007 12Isomaltoriose504.4411127.2 -5.709 13Isorhannetin316.2673 5.25 1.230Kaempferol286.2434.51.04230Kojibiose342.299718 -3.83 12Laminaribiose342.299818.7 -3.898 12Leucine131.17433 -1.521 20Luteolin286.243 4.5 0.92730Lysine146.18954 -3.187 10Melezitose504.4411125.3 -5.076 13Methionine149.20733.5 -1.588 20Myricetin318.23956 -0.298 21Nigerose342.299818.7 -3.458 12Panose504.4411026.5 -5.415 13Phenylalanine165.19133 -1.145 20Protocatechuic acid496.9080 3.7 8.111	Hesperetin	302.283	2	4.75	1.782	3	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Histidine	155.156	4	5	-2.679	2	0
Hydrobenzoic acid183.122 3.75 0.101 20Isoleucine131.17433 -1.524 20Isomaltose 342.299 8 18.7 -4.007 12Isomaltotiose 504.441 11 27.2 -5.709 13Isorhamnetin 316.267 3 5.25 1.2 30Kaempferol 286.24 3 4.5 1.042 30Kojibiose 342.299 7 18 -3.83 12Laminaribiose 342.299 8 18.7 -3.898 12Leucine 131.174 33 -1.521 20Luteolin 286.24 3 4.5 0.927 30Lysine 146.189 54 -3.187 10Melezitose 504.441 11 25.3 -5.076 13Methionine 149.207 3 3.5 -1.588 20Myricetin 318.239 56 -0.298 21Nigerose 342.299 8 18.7 -3.458 12Panose 504.441 10 26.5 -5.415 13OMyricetin 318.239 56 -0.298 21Nigerose 342.299 8 18.7 -3.458 12OPrinocembrin 256.257 1 3.25 -2.358 30<	Homogentisic acid	168.149	3	3.5	0.407	2	0
Isoleucine 131.174 3 3 -1.524 2 0 Isomaltose 342.299 8 18.7 -4.007 1 2 Isomaltotriose 504.441 11 27.2 -5.709 1 3 Isorhannetin 316.267 3 5.25 1.2 3 0 Kaempferol 286.24 3 4.5 1.042 3 0 Kojibiose 342.299 7 18 -3.83 1 2 Laminaribiose 342.299 8 18.7 -3.898 1 2 Leucine 131.174 3 3 -1.521 2 0 Luteolin 286.24 3 4.5 0.927 3 0 Lysine 146.189 5 4 -3.187 1 0 Melezitose 504.441 11 25.3 -5.076 1 3 Methionine 149.207 3 3.5 -1.588 2 0 Myricetin 318.239 5 6 -0.298 2 1 Nigerose 342.299 8 18.7 -3.458 1 2 Panose 504.441 10 26.5 -5.415 1 3 Phenylalanine 165.191 3 3 -1.145 2 0 Protocatechuic acid 496.908 0 3.7 8.111 1 1 Quercetin 302.24 4 5.25 0.368 2 0 Ren	Hydrobenzoic acid	183.12	2	3.75	0.101	2	0
Isomaltose 342.299 8 18.7 -4.007 12Isomaltotriose 504.441 11 27.2 -5.709 13Isorhamnetin 316.267 3 5.25 1.2 30Kaempferol 286.24 3 4.5 1.042 30Kojibiose 342.299 7 18 -3.83 12Laminaribiose 342.299 8 18.7 -3.898 12Leucine 131.174 33 -1.521 20Luteolin 286.24 3 4.5 0.927 30Lysine 146.189 54 -3.187 10Melezitose 504.441 11 25.3 -5.076 13Methionine 149.207 3 3.5 -1.588 20Myricetin 318.239 56 -0.298 21Nigerose 342.299 8 18.7 -3.458 12Panose 504.441 10 26.5 -5.415 13Phenylalanine 165.191 33 -1.145 20Proline 115.132 2 3.5 -2.089 20Proticatechuic acid 496.908 0 3.7 8.111 11Quercetin 302.24 4 5.25 0.368 20Rutin 610.524 9 20.55 -2.582 13Serine <td< td=""><td>Isoleucine</td><td>131.174</td><td>3</td><td>3</td><td>-1.524</td><td>2</td><td>0</td></td<>	Isoleucine	131.174	3	3	-1.524	2	0
Isomaltotriose 504.441 11 27.2 -5.709 1 3 Isorhametin 316.267 3 5.25 1.2 3 0 Kaempferol 286.24 3 4.5 1.042 3 0 Kojibiose 342.299 7 18 -3.83 1 2 Laminaribiose 342.299 8 18.7 -3.898 1 2 Leucine 131.174 3 3 -1.521 2 0 Luteolin 286.24 3 4.5 0.927 3 0 Lysine 146.189 5 4 -3.187 1 0 Melezitose 504.441 11 25.3 -5.076 1 3 Methionine 149.207 3 3.5 -1.588 2 0 Myricetin 318.239 5 6 -0.298 2 1 Nigerose 342.299 8 18.7 -3.458 1 2 Panose 504.441 10 26.5 -5.415 1 3 Phenylalanine 165.191 3 3 -1.145 2 0 Procembrin 256.257 1 3.25 2.358 3 0 Proline 115.132 2 3.5 -2.089 2 0 Protocatechuic acid 496.908 0 3.7 8.111 1 1 Quercetin 302.24 4 5.25 0.368 2 0 Rutin<	Isomaltose	342.299	8	18.7	-4.007	1	2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Isomaltotriose	504.441	11	27.2	-5.709	1	3
Kaempferol 286.24 3 4.5 1.042 3 0 Kojibiose 342.299 7 18 -3.83 1 2 Laminaribiose 342.299 8 18.7 -3.898 1 2 Leucine 131.174 3 3 -1.521 2 0 Luteolin 286.24 3 4.5 0.927 3 0 Lysine 146.189 5 4 -3.187 1 0 Melezitose 504.441 11 25.3 -5.076 1 3 Methionine 149.207 3 3.5 -1.588 2 0 Myricetin 318.239 5 6 -0.298 2 1 Nigerose 342.299 8 18.7 -3.458 1 2 Panose 504.441 10 26.5 -5.415 1 3 Phenylalanine 165.191 3 3 -1.145 2 0 Protocatechuic acid 496.908 0 3.7 8.111 1 1 Quercetin 302.24 4 5.25 0.368 2 0 Rutin 610.524 9 20.55 -2.582 1 3 Serine 105.093 3 3.7 -3.314 1 0 Sucrose 342.299 8 16.8 -3.681 1 2 Theanderose 504.441 11 25.3 -4.871 1 3	Isorhamnetin	316.267	3	5.25	1.2	3	0
Kojibiose 342.299 718 -3.83 12Laminaribiose 342.299 8 18.7 -3.898 12Leucine 131.174 33 -1.521 20Luteolin 286.24 3 4.5 0.927 30Lysine 146.189 54 -3.187 10Melezitose 504.441 11 25.3 -5.076 13Methionine 149.207 3 3.5 -1.588 20Myricetin 318.239 56 -0.298 21Nigerose 342.299 8 18.7 -3.458 12Panose 504.441 10 26.5 -5.415 13Phenylalanine 165.191 33 -1.145 20Pinocembrin 256.257 1 3.25 2.358 30Protocatechuic acid 496.908 0 3.7 8.111 11Quercetin 302.24 4 5.25 0.368 20Rutin 610.524 9 20.55 -2.582 13Serine 105.093 3 3.7 -3.314 10Sucrose 342.299 8 16.8 -3.681 12Theanderose 504.441 11 25.3 -4.871 13	Kaempferol	286.24	3	4.5	1.042	3	0
Laminaribiose 342.299 8 18.7 -3.898 12Leucine 131.174 33 -1.521 20Luteolin 286.24 3 4.5 0.927 30Lysine 146.189 54 -3.187 10Melezitose 504.441 11 25.3 -5.076 13Methionine 149.207 3 3.5 -1.588 20Myricetin 318.239 56 -0.298 21Nigerose 342.299 8 18.7 -3.458 12Panose 504.441 10 26.5 -5.415 13Phenylalanine 165.191 33 -1.145 20Pinocembrin 256.257 1 3.25 2.358 30Protine 115.132 2 3.5 -2.089 20Protocatechuic acid 496.908 0 3.7 8.111 11Quercetin 302.24 4 5.25 0.368 20Rutin 610.524 9 20.55 -2.582 13Serine 105.093 3 3.7 -3.314 10Sucrose 342.299 8 16.8 -3.681 12Theanderose 504.441 11 25.3 -4.871 13	Kojibiose	342.299	7	18	-3.83	1	2
Leucine 131.174 3 3 -1.521 2 0 Luteolin 286.24 3 4.5 0.927 3 0 Lysine 146.189 5 4 -3.187 1 0 Melezitose 504.441 11 25.3 -5.076 1 3 Methionine 149.207 3 3.5 -1.588 2 0 Myricetin 318.239 5 6 -0.298 2 1 Nigerose 342.299 8 18.7 -3.458 1 2 Panose 504.441 10 26.5 -5.415 1 3 Phenylalanine 165.191 3 3 -1.145 2 0 Pinocembrin 256.257 1 3.25 2.358 3 0 Proline 115.132 2 3.5 -2.089 2 0 Protocatechuic acid 496.908 0 3.7 8.111 1 1 Quercetin 302.24 4 5.25 0.368 2 0 Rutin 610.524 9 20.55 -2.582 1 3 Serine 105.093 3 3.7 -3.314 1 0 Sucrose 342.299 8 16.8 -3.681 1 2 Theanderose 504.441 11 25.3 -4.871 1 3	Laminaribiose	342.299	8	18.7	-3.898	1	2
Luteolin 286.24 3 4.5 0.927 3 0 Lysine 146.189 5 4 -3.187 1 0 Melezitose 504.441 11 25.3 -5.076 1 3 Methionine 149.207 3 3.5 -1.588 2 0 Myricetin 318.239 5 6 -0.298 2 1 Nigerose 342.299 8 18.7 -3.458 1 2 Panose 504.441 10 26.5 -5.415 1 3 Phenylalanine 165.191 3 3 -1.145 2 0 Pinocembrin 256.257 1 3.25 2.358 3 0 Proline 115.132 2 3.5 -2.089 2 0 Protocatechuic acid 496.908 0 3.7 8.111 1 1 Quercetin 302.24 4 5.25 0.368 2 0 Rutin 610.524 9 20.55 -2.582 1 3 Serine 105.093 3 3.7 -3.314 1 0 Sucrose 342.299 8 16.8 -3.681 1 2 Theanderose 504.441 11 25.3 -4.871 1 3	Leucine	131.174	3	3	-1.521	2	0
Lysine146.18954 -3.187 10Melezitose504.4411125.3 -5.076 13Methionine149.20733.5 -1.588 20Myricetin318.23956 -0.298 21Nigerose342.299818.7 -3.458 12Panose504.4411026.5 -5.415 13Panose504.4411026.5 -5.415 13Phenylalanine165.19133 -1.145 20Pinocembrin256.2571 3.25 2.35830Proline115.1322 3.5 -2.089 20Protocatechuic acid496.9080 3.7 8.111 11Quercetin 302.24 4 5.25 0.368 20Rutin 610.524 9 20.55 -2.582 13Serine105.0933 3.7 -3.314 10Sucrose 342.299 8 16.8 -3.681 12Theanderose 504.441 11 25.3 -4.871 13Threeorine 119.12 3 3.7 -3.35 10	Luteolin	286.24	3	4.5	0.927	3	0
Melezitose 504.441 11 25.3 -5.076 1 3 Methionine 149.207 3 3.5 -1.588 2 0 Myricetin 318.239 5 6 -0.298 2 1 Nigerose 342.299 8 18.7 -3.458 1 2 Panose 504.441 10 26.5 -5.415 1 3 Phenylalanine 165.191 3 3 -1.145 2 0 Pinocembrin 256.257 1 3.25 2.358 3 0 Proline 115.132 2 3.5 -2.089 2 0 Protoccatechuic acid 496.908 0 3.7 8.111 1 1 Quercetin 302.24 4 5.25 0.368 2 0 Rutin 610.524 9 20.55 -2.582 1 3 Serine 105.093 3 3.7 -3.314 <	Lysine	146.189	5	4	-3.187	1	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Melezitose	504.441	11	25.3	-5.076	1	3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Methionine	149.207	3	3.5	-1.588	2	0
Nigerose 342.299 8 18.7 -3.458 1 2 Panose 504.441 10 26.5 -5.415 1 3 Phenylalanine 165.191 3 3 -1.145 2 0 Pinocembrin 256.257 1 3.25 2.358 3 0 Proline 115.132 2 3.5 -2.089 2 0 Protocatechuic acid 496.908 0 3.7 8.111 1 1 Quercetin 302.24 4 5.25 0.368 2 0 Rutin 610.524 9 20.55 -2.582 1 3 Serine 105.093 3 3.7 -3.314 1 0 Sucrose 342.299 8 16.8 -3.681 1 2 Theanderose 504.441 11 25.3 -4.871 1 3	Myricetin	318.239	5	6	-0.298	2	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Nigerose	342.299	8	18.7	-3.458	1	2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Panose	504.441	10	26.5	-5.415	1	3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Phenylalanine	165.191	3	3	-1.145	2	0
Proline 115.132 2 3.5 -2.089 2 0 Protocatechuic acid 496.908 0 3.7 8.111 1 1 Quercetin 302.24 4 5.25 0.368 2 0 Rutin 610.524 9 20.55 -2.582 1 3 Serine 105.093 3 3.7 -3.314 1 0 Sucrose 342.299 8 16.8 -3.681 1 2 Theanderose 504.441 11 25.3 -4.871 1 3 Threonine 119.12 3 3.7 -3.35 1 0	Pinocembrin	256.257	1	3.25	2.358	3	0
Protocatechuic acid 496.908 0 3.7 8.111 1 1 Quercetin 302.24 4 5.25 0.368 2 0 Rutin 610.524 9 20.55 -2.582 1 3 Serine 105.093 3 3.7 -3.314 1 0 Sucrose 342.299 8 16.8 -3.681 1 2 Theanderose 504.441 11 25.3 -4.871 1 3 Threonine 119.12 3 3.7 -3.35 1 0	Proline	115.132	2	3.5	-2.089	2	0
Quercetin 302.24 4 5.25 0.368 2 0 Rutin 610.524 9 20.55 -2.582 1 3 Serine 105.093 3 3.7 -3.314 1 0 Sucrose 342.299 8 16.8 -3.681 1 2 Theanderose 504.441 11 25.3 -4.871 1 3 Threonine 119.12 3 3.7 -3.35 1 0	Protocatechuic acid	496.908	0	3.7	8.111	1	1
Rutin 610.524 9 20.55 -2.582 1 3 Serine 105.093 3 3.7 -3.314 1 0 Sucrose 342.299 8 16.8 -3.681 1 2 Theanderose 504.441 11 25.3 -4.871 1 3 Threonine 119.12 3 3.7 -3.35 1 0	Ouercetin	302.24	4	5.25	0.368	2	0
Serine 105.093 3 3.7 -3.314 1 0 Sucrose 342.299 8 16.8 -3.681 1 2 Theanderose 504.441 11 25.3 -4.871 1 3 Threonine 119.12 3 3.7 -3.35 1 0	Rutin	610.524	9	20.55	-2.582	1	3
Sucrose 342.299 8 16.8 -3.681 1 2 Theanderose 504.441 11 25.3 -4.871 1 3 Threonine 119.12 3 3.7 -3.35 1 0	Serine	105 093	3	37	-3.314	1	0
Theanderose 504.441 11 25.3 -4.871 1 3 Threonine 119.12 3 3.7 -3.35 1 0	Sucrose	342 299	8	16.8	-3 681	1	2
Threenine 119,12 3 3,7 -3,35 1 0	Theanderose	504 441	11	25.3	-4 871	1	3
	Threonine	119.12	3	37	-3,35	1	0

International Journal of Pharmacology and Pharmaceutical Science

Trehalose	342.299	8	18.7	-3.868	1	2
Trehalulose	342.299	8	16.8	-3.376	1	2
Tryptophan	204.228	4	3	-1.06	2	0
Turanose	342.299	7	18	-3.696	1	2
Tyrosine	181.191	4	3.75	-1.866	2	0
Vanillic acid	168.149	2	3.5	1.042	2	0
1HOV Coligand	574.734	3	14.9	1.434	2	1
10JA Coligand	147.133	1	4.5	0.118	2	0
1PXX Coligand	296.152	2	2.5	4.505	3	0
2Z5X Coligand	212.251	1	1.75	3.062	3	0
4G9L Coligand	316.371	2	9.45	-0.094	3	0
6ESM Coligand	422.495	2	4.75	5.5	2	1
6PP1 Coligand	333.432	4	3.25	3.281	3	0
4LXZ Coligand	264.324	3	6.7	0.746	3	0

Mol wt_MW,: R.V.: 130–725; donorHB, estimated number of hydrogen bonds that would be donated by the solute to water molecules in an aqueous solution: R.V.: 0.0–6.0; accptHB, estimated number of hydrogen bonds that would be accepted by the solute from water molecules in an aqueous solution: R.V. = 2.0-20.0; QPlogPo/w, predicted octanol/water partition coefficient: HOA, human oral absorption level, 1, 2, 3: 1 = low, 2 = medium; ROF, the number of violations of Lipinski's rule of five;

Discussion

Depression is a mood disorder that involves a constant feeling of sadness and loss of interest. It is a known mental disorder shown by many studies. In most cases, depression can lead to suicide or unintentional hurting of oneself (Wilcox. et al., 2004) [32]. Depression is considered as an imbalance of neurotransmitters and the production of the neurotransmitters catalysed by various enzymes directly or indirectly. It be should understood that depression affects every person in a unique way. The following enzymes; Monoamine oxidase A and B, Cyclooxygenase-2, Matrix Metalloproteinase 2, 3, 9, Histone deacetylase 2 and Nitric oxide synthase have shown to be implicated in the mechanisms of depression and these enzymes were docked with the phytochemical compounds of honey obtained from literature as described by Ehigiator et al. (2021). Some plants have been implicated in amelioration of depression. previous studies have identified the use of honey in the treatment of depression (Mijanur et al., 2014)^[15]. Investigation of the antidepressant effect of honey (Apis mellifera) was carried out, using in-vivo pharmacological evaluations (tail suspension test and forced swim test) in-silico studies was employed to predict the likely mechanism of action. In tail suspension and forced swim tests, immobility study, it was observed that honey may remedy conditions of depression but was more likely to have a potent a synergistic effect with imipramine. Both tests were positive and it was imperative to attempt to further investigate the probable mechanism of action of honey in depression, using the phytochemicals of honey obtained through literature mining to dock with the enzymes involved in depression, hence molecular docking was involved. Molecular docking research focuses on computationally simulating the molecular recognition process; it aims to achieve an optimized conformation for both the protein and ligand such that the free energy of the overall system is minimized. Chlorogenic acid and Coumaric acid were found to have good docking scores with the matrix metalloproteinases MMPs.Chlorogenic acid seemed to have potential inhibitory affinity for MAO-B while, myricetin, catachin hydrate, isohamnetin, luteolin, quercetin presented with potential inhibitory affinities for MAO-A. MAO-A mainly metabolizes 5-HT, dopamine (DA) and norepinephrine (NE) Chaurasiya *et al.*, 2014; Sacher *et al.*, 2011)^[5, 24].

Ellagic acid was the only compound with good potential inhibitory effect on COX-2, upon docking. COX-2 is inducible, short-lived and is responsible for the biosynthesis of prostaglandins in inflammatory cells and CNS. COX-2 is known to interact with neurotransmitters such as acetylcholine, serotonin, and glutamate. COX-2 contributes to the pathogenesis of the depressive disorder. (Peskar 2001; Müller et al., 2009)^{[21,} ^{18]}. A previous study on the antidepressant activity of honey mixed barely resulted to a significant decrease on depression, stress, and mood disturbances scores compared with the control group when used on elderly depressed patient. Nevertheless participants reported that they observed improvements 3-4 days after the initiation of the initiation of treatment (Amira and Amin 2018). It is pertinent to also note that, in as much as compounds like D-Maltotriose, Erlose, Isomaltotriose, Melezitose, Rutin, Panose and Theanderose look to have high affinity for some of the targets of concern, they may not pass as good oral drugs as they violate the rule of five. However, compounds such as; chlorogenic acid, nigerose, myricetin coumaric acid demonstrated high affinity for various targets and do not violate the rule of potential oral drug (Lipinski, 2001) [4]. Hence, are likely to be investigated as oral antidepressant agents.

Conclusion

This study demonstrated that honey has a promising antidepressant activity, with a strong synergistic effect with imipramine. Further preclinical studies on confident in safety should be investigated with other derivatives like propolis, for drug discovery and eventual clinical trials investigation within the respect of antidepressant activity and synergistic effect of honey with imipramine. Furthermore chlorogenic acid which is found to be the most isolated compound that shows some affinity for inhibitory potential on more enzymes involved in depression should be properly be investigated as a likely antidepressant hit target agent.

Conflict of Interest

The authors declare no conflict of interest.

Research Funding

Solely by authors.

Acknowledgement

We are immensely grateful to, Mr Niyi Adelakun and the staff at the Centre for Bio-computing and Drug Development, Adekunle Ajasin University.

Great thanks to he staff of the Department of Pharmacology and Toxicology, of the Facultyof Pharmacy, Madonna University, Elele for technical logistic support.

References

- 1. Ali AM, Hendawy AO. Bee Honey as a Potentially Effective Treatment for Depression: A Review of Clinical and Preclinical Findings. JOJ Nursing & Health Care, 2018, 9(2).
- 2. Badrasawi MM, Shahar S, Manaf ZA, Haron H. Effect of Talbinah food consumption on depressive symptoms among elderly individuals in long term care facilities, randomized clinical trial. Clinical Intervetions in Aging,2013:8:279-285.
- 3. Berman HM, Westbrook J, Feng Z, Gillialand G, Bhat TN, Weissig H *et al.* The Protein data bank. Nucleic Acids Research,2000:28(1):235-242.
- 4. Brooks WH, Daniel KG, Sung SS, Guida WC. Computational validation of the importance of absolute stereochemistry in virtual screening. Journal of Chemical Information and Modeling,2008:48:639-45.
- 5. Chaurasiya ND, Ibrahim MA, Muhammad I. Monoamine oxidase inhibitory constituents of propolis: kinetics and mechanism of inhibition of recombinant human MAO-A and MAO-B. Molecules,2014:19:18936-52.
- Cianciosi D, Forbes-Hernández TY, Afrin S, Gasparrin M, Rebored Rodriguez P, Manna PP *et al.* Phenolic Compounds in Honey and Their Associated Health Benefits:Review. *Molecules*,2018:23(9):2322
- Drago A, Monti B, De Ronchi D. Genetic variations within Metalloproteinases impact on the prophylaxis of depressive phases in bipolar patients. Neuropsychobiology,2014:69:76-82.
- Ehigiator BE, Adesida AS, Omotuyi IO. Chicoric Acid, a Phytochemical Compound of Solenostemon monostachyus: Possible Drug Candidate for the Relief of Erectile Dysfunction. International Journal of Engineering Applied Sciences and Technology,2020:4:509-518.
- 9. Eteraf-Oskouei T, Najafi M. Traditional and modern uses of natural honey in human diseases: A review. Iranian Journal of Basic Medical Sciences,2013:16(6):731-742.
- 10. Farrell B. Utilizing Telehealth Technology to Reduce Social Isolation and Depression in Seniors, 2021. Available online: https://digital.sandiego.edu/dnp/113 2020.
- 11. Ferreres F, Blazquez MA, Gil MI, Tomás-Barberan FA. Separation of honey flavonoids by micellar electrokinetic capillary chromatography. Journal of Chromatography A,1994:669(1-2):268-274.
- Ferreres F, Juan T, Perez-Arquillue C, Herrera-Marteache A, Garcia-Viguera, C, Tomás-Barberán FA. Evaluation of pollen as a source of kaempferol in rosemary honey. Journal of the Science of Food and Agriculture,1998:77(4):506-510.
- 13. Hermosín I, Chicón RM, Cabezudo MD. Free amino acid composition and botanical origin of honey. Food Chemistry,2003:83(2):263-268.
- 14. Lipinski CA. Avoiding investment in doomed drugs. Current drug discovery,2001:1:17-19.

- 15. Mijanur Rahman M, Gan SH, Khalil MI. Neurological effects of honey: current and future prospects. Evidence Based Complement and Alternative Medicine, 2014.
- 16. Rahman MM, Gan SH, Khalil MI. "Neurological Effects of Honey: Current and Future Prospects", Evidence-Based Complementary and Alternative Medicine,2014:958721,13.
- 17. Morris G, Berk M. The many roads to mitochondrial dysfunction in neuroimmune and neuropsychiatric disorders. BioMed Center (BMC) Medicine,2015:13:68.
- Müller N, Myint AM, Schwarz MJ. The impact of neuroimmune dysregulation on neuroprotection and neurotoxicity in psychiatric disorders-relation to drug treatment. Dialogues in Clinical Neuroscience, 2009:11:319-32.
- Munstedt K, Voss B, Kullmer U, Schneider U, Hubner J. Bee pollen and honey for the alleviation of hot flushes and other menopausal symptoms in breast cancer patients. Molecular and Clinical Oncology,2015:3(4):869-874.
- Ouchemoukh S, Schweitze P, Bey MB, Djoudad-Kadji H, Louaileche H. HPLC Sugar Profiles of Algerian Honeys. Food Chemistry,2010:121(2):561-568.
- 21. Peskar BM. Role of cyclooxygenase isoforms in gastric mucosal defence. Journal of Physiology Paris,2001:95:3-9.
- 22. Porsolt R, Bertin A, Jalfre M. Behavioural Despair in Mice: A Primary Screening Test for Antidepressants. Archives Internationales De Pharmacodynamie et De Thérapie,1977a:229:327-336.
- 23. Porsolt RD, Le Pichon M, Jalfre M. Depression: A New Animal Model Sensitive to Antidepressant Treatments. Nature. Archives Internationales De Pharmacodynamie et De Thérapie,1977b:266:730-732
- 24. Sacher J, Houle S, Parkes J, Rusjan P, Sagrati S, Wilson AA *et al.* Monoamine oxidase A inhibitor occupancy during treatment of major depressive episodes with moclobemide or St. John's Wort: an [(11)C]-harmine Positron Emission Tomography (PET) study. Journal of Psychiatry and Neuroscience,2011:36:375-382.
- 25. Sastry GM, Adzhigrey M, Day T, Annabhimoju R, Sherman W. Protein and Ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design,2013:27(3):221-234.
- 26. Schrödinger Release 2018-1b: LigPrep, Schrödinger, LLC, New York, NY, 2018.
- 27. Schrödinger Release 2018-1c: Maestro, Schrödinger, LLC, New York, NY, 2018.
- Siddiqui IR, Furgala B. Isolation and characterization of oligosaccharides from honey. Part i disaccharides. Journal of Apicultural Research, 1967:6(3):139-45.
- 29. Steru L, Chermat R, Thierry B, Simon P. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology,1985:85:367-370.
- Tomás-Barberán FA, Martos I, Ferreres F, Radovic BS, Anklam E. HPLC flavonoid profiles as markers for the botanical origin of European unifloral honeys. Journal of the Science of Food and Agriculture,2001:5(81):485-496.
- 31. WHO. Depression, 2020. Available at :[accessed 04 of March, 2021]">https://www.who.int/news-room/fact-sheets/detail/depression>:[accessed 04 of March, 2021].
- 32. Wilcox HC, Conner KR, Caine ED. Association of alcohol and drug use disorders and completed suicide: an empirical

review of cohort studies. Drug and Alcohol Dependence,2004:76(11):10-1016.